
01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 1 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Preethi Kasireddy
Blockchain Engineer. I have a passion for understanding things at a fundamental level and shar…
Sep 27 · 33 min read

How does Ethereum work, anyway?

Introduction
Odds are you’ve heard about the Ethereum blockchain, whether or not

you know what it is. It’s been in the news a lot lately, including the cover

of some major magazines, but reading those articles can be like gibberish

if you don’t have a foundation for what exactly Ethereum is. So what is

it? In essence, a public database that keeps a permanent record of digital

transactions. Importantly, this database doesn’t require any central

authority to maintain and secure it. Instead it operates as a “trustless”

transactional system — a framework in which individuals can make peer-

Source: r/ethereum

https://medium.com/@preethikasireddy?source=post_header_lockup
https://medium.com/@preethikasireddy?source=post_header_lockup
https://www.reddit.com/r/ethereum/comments/67sds9/ethereum_background_wallpaper_image_in_hd/


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 2 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

to-peer transactions without needing to trust a third party OR one

another.

Still confused? That’s where this post comes in. My aim is to explain how

Ethereum functions at a technical level, without complex math or scary-

looking formulas. Even if you’re not a programmer, I hope you’ll walk

away with at least better grasp of the tech. If some parts are too technical

and diKcult to grok, that’s totally Lne! There’s really no need to

understand every little detail. I recommend just focusing on

understanding things at a broad level.

 

Many of the topics covered in this post are a breakdown of the concepts

discussed in the yellow paper. I’ve added my own explanations and

diagrams to make understanding Ethereum easier. Those brave enough

to take on the technical challenge can also read the Ethereum yellow

paper.

Let’s get started!

Blockchain definition
A blockchain is a “cryptographically secure transactional singleton

machine with shared-state.” [1] That’s a mouthful, isn’t it? Let’s break

it down.

“Cryptographically secure” means that the creation of digital

currency is secured by complex mathematical algorithms that are

obscenely hard to break. Think of a Lrewall of sorts. They make it

nearly impossible to cheat the system (e.g. create fake transactions,

erase transactions, etc.)

“Transactional singleton machine” means that there’s a single

canonical instance of the machine responsible for all the

transactions being created in the system. In other words, there’s a

single global truth that everyone believes in.

“With shared-state” means that the state stored on this machine is

shared and open to everyone.

Ethereum implements this blockchain paradigm.

•

•

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 3 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

The Ethereum blockchain paradigm
explained
The Ethereum blockchain is essentially a transaction-based state

machine. In computer science, a state machine refers to something that

will read a series of inputs and, based on those inputs, will transition to a

new state.

With Ethereum’s state machine, we begin with a “genesis state.” This is

analogous to a blank slate, before any transactions have happened on the

network. When transactions are executed, this genesis state transitions

into some Lnal state. At any point in time, this Lnal state represents the

current state of Ethereum.

The state of Ethereum has millions of transactions. These transactions

are grouped into “blocks.” A block contains a series of transactions, and

each block is chained together with its previous block.



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 4 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

To cause a transition from one state to the next, a transaction must be

valid. For a transaction to be considered valid, it must go through a

validation process known as mining. Mining is when a group of nodes

(i.e. computers) expend their compute resources to create a block of

valid transactions.

Any node on the network that declares itself as a miner can attempt to

create and validate a block. Lots of miners from around the world try to

create and validate blocks at the same time. Each miner provides a

mathematical “proof” when submitting a block to the blockchain, and

this proof acts as a guarantee: if the proof exists, the block must be valid.

For a block to be added to the main blockchain, the miner must prove it

faster than any other competitor miner. The process of validating each

block by having a miner provide a mathematical proof is known as a

“proof of work.”

A miner who validates a new block is rewarded with a certain amount of

value for doing this work. What is that value? The Ethereum blockchain

uses an intrinsic digital token called “Ether.” Every time a miner proves a

block, new Ether tokens are generated and awarded.

You might wonder: what guarantees that everyone sticks to one chain of

blocks? How can we be sure that there doesn’t exist a subset of miners

who will decide to create their own chain of blocks?

Earlier, we deLned a blockchain as a transactional singleton machine

with shared-state. Using this deLnition, we can understand the correct

current state is a single global truth, which everyone must accept.

Having multiple states (or chains) would ruin the whole system, because

it would be impossible to agree on which state was the correct one. If the

chains were to diverge, you might own 10 coins on one chain, 20 on



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 5 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

another, and 40 on another. In this scenario, there would be no way to

determine which chain was the most “valid.”

Whenever multiple paths are generated, a “fork” occurs. We typically

want to avoid forks, because they disrupt the system and force people to

choose which chain they “believe” in.

To determine which path is most valid and prevent multiple chains,

Ethereum uses a mechanism called the “GHOST protocol.”

“GHOST” = “Greedy Heaviest Observed Subtree”

In simple terms, the GHOST protocol says we must pick the path that

has had the most computation done upon it. One way to determine

that path is to use the block number of the most recent block (the “leaf

block”), which represents the total number of blocks in the current path

(not counting the genesis block). The higher the block number, the

longer the path and the greater the mining e_ort that must have gone

into arriving at the leaf. Using this reasoning allows us to agree on the

canonical version of the current state.



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 6 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Now that you’ve gotten the 10,000-foot overview of what a blockchain

is, let’s dive deeper into the main components that the Ethereum system

is comprised of:

accounts

state

gas and fees

transactions

blocks

transaction execution

mining

proof of work

One note before getting started: whenever I say “hash” of X, I am referring to

the KECCAK-256 hash, which Ethereum uses.

Accounts
The global “shared-state” of Ethereum is comprised of many small

objects (“accounts”) that are able to interact with one another through a

message-passing framework. Each account has a a state associated with

it and a 20-byte address. An address in Ethereum is a 160-bit identiLer

that is used to identify any account.

•

•

•

•

•

•

•

•

https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 7 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

There are two types of accounts:

Externally owned accounts, which are controlled by private keys

and have no code associated with them.

Contract accounts, which are controlled by their contract code

and have code associated with them.

Externally owned accounts vs. contract accounts
It’s important to understand a fundamental di_erence between

externally owned accounts and contract accounts. An externally owned

account can send messages to other externally owned accounts OR

to other contract accounts by creating and signing a transaction

using its private key. A message between two externally owned

accounts is simply a value transfer. But a message from an externally

owned account to a contract account activates the contract account’s

code, allowing it to perform various actions (e.g. transfer tokens, write

to internal storage, mint new tokens, perform some calculation, create

new contracts, etc.).

Unlike externally owned accounts, contract accounts can’t initiate

new transactions on their own. Instead, contract accounts can only Lre

transactions in response to other transactions they have received (from

an externally owned account or from another contract account). We’ll

learn more about contract-to-contract calls in the “Transactions and

Messages” section.

•

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 8 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Therefore, any action that occurs on the Ethereum blockchain is

always set in motion by transactions Lred from externally

controlled accounts.

Account state
The account state consists of four components, which are present

regardless of the type of account:

nonce: If the account is an externally owned account, this number

represents the number of transactions sent from the account’s

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 9 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

address. If the account is a contract account, the nonce is the

number of contracts created by the account.

balance: The number of Wei owned by this address. There are ¹⁰¹⁸

Wei per Ether.

storageRoot: A hash of the root node of a Merkle Patricia tree

(we’ll explain Merkle trees later on). This tree encodes the hash of

the storage contents of this account, and is empty by default.

codeHash: The hash of the EVM (Ethereum Virtual Machine — 

more on this later) code of this account. For contract accounts, this

is the code that gets hashed and stored as the codeHash. For

externally owned accounts, the codeHash Leld is the hash of the

empty string.

World state
Okay, so we know that Ethereum’s global state consists of a mapping

between account addresses and the account states. This mapping is

stored in a data structure known as a Merkle Patricia tree.

A Merkle tree (or also referred as “Merkle trie”) is a type of binary tree

composed of a set of nodes with:

a large number of leaf nodes at the bottom of the tree that contain

the underlying data

a set of intermediate nodes, where each node is the hash of its two

child nodes

a single root node, also formed from the hash of its two child node,

representing the top of the tree

•

•

•

•

•

•

https://en.wikipedia.org/wiki/Binary_tree


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 10 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

The data at the bottom of the tree is generated by splitting the data that

we want to store into chunks, then splitting the chunks into buckets, and

then taking the hash of each bucket and repeating the same process until

the total number of hashes remaining becomes only one: the root hash.

This tree is required to have a key for every value stored inside it.

Beginning from the root node of the tree, the key should tell you which

child node to follow to get to the corresponding value, which is stored in

the leaf nodes. In Ethereum’s case, the key/value mapping for the state

tree is between addresses and their associated accounts, including the

balance, nonce, codeHash, and storageRoot for each account (where the

storageRoot is itself a tree).



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 11 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

This same trie structure is used also to store transactions and receipts.

More speciLcally, every block has a “header” which stores the hash of the

root node of three di_erent Merkle trie structures, including:

State trie

Transactions trie

Receipts trie

1.

2.

3.

Source: Ethereum whitepaper



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 12 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

The ability to store all this information eKciently in Merkle tries is

incredibly useful in Ethereum for what we call “light clients” or “light

nodes.” Remember that a blockchain is maintained by a bunch of nodes.

Broadly speaking, there are two types of nodes: full nodes and light

nodes.

A full archive node synchronizes the blockchain by downloading the

full chain, from the genesis block to the current head block,

executing all of the transactions contained within. Typically, miners

store the full archive node, because they are required to do so for the

mining process. It is also possible to download a full node without

executing every transaction. Regardless, any full node contains the

entire chain.

But unless a node needs to execute every transaction or easily query

historical data, there’s really no need to store the entire chain. This is

where the concept of a light node comes in. Instead of downloading

and storing the full chain and executing all of the transactions, light

nodes download only the chain of headers, from the genesis block

to the current head, without executing any transactions or

retrieving any associated state. Because light nodes have access to

block headers, which contain hashes of three tries, they can still easily

generate and receive veriLable answers about transactions, events,

balances, etc.



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 13 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

The reason this works is because hashes in the Merkle tree propagate

upward — if a malicious user attempts to swap a fake transaction into the

bottom of a Merkle tree, this change will cause a change in the hash of

the node above, which will change the hash of the node above that, and

so on, until it eventually changes the root of the tree.

Any node that wants to verify a piece of data can use something called a

“Merkle proof” to do so. A Merkle proof consists of:

A chunk of data to be veriLed

The root hash of the tree

The “branch” (all of the hashes going up along the path from the

chunk to the root)

1.

2.

3.



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 14 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Anyone reading the proof can verify that the hashing for that branch is

consistent all the way up the tree, and therefore that the given chunk is

actually at that position in the tree.

In summary, the beneLt of using a Merkle Patricia tree is that the

root node of this structure is cryptographically dependent on the

data stored in the tree, and so the hash of the root node can be used

as a secure identity for this data. Since the block header includes

the root hash of the state, transactions, and receipts trees, any node

can validate a small part of state of Ethereum without needing to

store the entire state, which can be potentially unbounded in size.

Gas and payment



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 15 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

One very important concept in Ethereum is the concept of fees. Every

computation that occurs as a result of a transaction on the

Ethereum network incurs a fee — there’s no free lunch! This fee is

paid in a denomination called “gas.”

Gas is the unit used to measure the fees required for a particular

computation. Gas price is the amount of Ether you are willing to spend

on every unit of gas, and is measured in “gwei.” “Wei” is the smallest unit

of Ether, where 1⁰¹⁸ Wei represents 1 Ether. One gwei is 1,000,000,000

Wei.

With every transaction, a sender sets a gas limit and gas price. The

product of gas price and gas limit represents the maximum amount of

Wei that the sender is willing to pay for executing a transaction.

For example, let’s say the sender sets the gas limit to 50,000 and a gas

price to 20 gwei. This implies that the sender is willing to spend at most

50,000 x 20 gwei = 1,000,000,000,000,000 Wei = 0.001 Ether to

execute that transaction.

Remember that the gas limit represents the maximum gas the sender is

willing to spend money on. If they have enough Ether in their account

balance to cover this maximum, they’re good to go. The sender is

refunded for any unused gas at the end of the transaction, exchanged at

the original rate.



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 16 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

In the case that the sender does not provide the necessary gas to execute

the transaction, the transaction runs “out of gas” and is considered

invalid. In this case, the transaction processing aborts and any state

changes that occurred are reversed, such that we end up back at the

state of Ethereum prior to the transaction — exactly as though it had

never happened. Since the machine already expended e_ort to run the

calculations before running out of gas, logically, none of the gas is

refunded to the sender.

Where exactly does this gas money go? All the money spent on gas by

the sender is sent to the “beneLciary” address, which is typically the

miner’s address. Since miners are expending the e_ort to run

computations and validate transactions, miners receive the gas fee as a

reward.



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 17 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Typically, the higher the gas price the sender is willing to pay, the greater

the value the miner derives from the transaction. Thus, the more likely

miners will be to select it. In this way, miners are free to choose which

transactions they want to validate or ignore. In order to guide senders on

what gas price to set, miners have the option of advertising the minimum

gas price for which they will execute transactions.

There are fees for storage, too
Not only is gas used to pay for computation steps, it is also used to

pay for storage usage. The total fee for storage is proportional to the

smallest multiple of 32 bytes used.

Fees for storage have some nuanced aspects. For example, since

increased storage increases the size of the Ethereum state database on

all nodes, there’s an incentive to keep the amount of data stored small.

For this reason, if a transaction has a step that clears an entry in the

storage, the fee for executing that operation of is waived, AND a refund

is given for freeing up storage space.

What’s the purpose of fees?
One important aspect of the way the Ethereum works is that every

single operation executed by the network is simultaneously eTected

by every full node. However, computational steps on the Ethereum

Virtual Machine are very expensive. Therefore, Ethereum smart

contracts are best used for simple tasks, like running simple business

logic or verifying signatures and other cryptographic objects, rather than

more complex uses, like Lle storage, email, or machine learning, which

can put a strain on the network. Imposing fees prevents users from

overtaxing the network.

Ethereum is a Turing complete language. (In short, a Turing machine is a

machine that can simulate any computer algorithm (for those not

familiar with Turing machines, check out this and this). This allows for

loops and makes Ethereum susceptible to the halting problem, a problem

in which you cannot determine whether or not a program will run

inLnitely. If there were no fees, a malicious actor could easily try to

disrupt the network by executing an inLnite loop within a transaction,

without any repercussions. Thus, fees protect the network from

deliberate attacks.

https://en.wikipedia.org/wiki/Turing_machine
http://mathworld.wolfram.com/TuringMachine.html
https://en.wikipedia.org/wiki/Halting_problem


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 18 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

You might be thinking, “why do we also have to pay for storage?” Well,

just like computation, storage on the Ethereum network is a cost that the

entire network has to take the burden of.

Transaction and messages
We noted earlier that Ethereum is a transaction-based state machine.

In other words, transactions occurring between di_erent accounts are

what move the global state of Ethereum from one state to the next.

In the most basic sense, a transaction is a cryptographically signed

piece of instruction that is generated by an externally owned

account, serialized, and then submitted to the blockchain.

There are two types of transactions: message calls and contract

creations (i.e. transactions that create new Ethereum contracts). 

 

 All transactions contain the following components, regardless of their

type:

nonce: a count of the number of transactions sent by the sender.

gasPrice: the number of Wei that the sender is willing to pay per

unit of gas required to execute the transaction.

gasLimit: the maximum amount of gas that the sender is willing to

pay for executing this transaction. This amount is set and paid

upfront, before any computation is done.

to: the address of the recipient. In a contract-creating transaction,

the contract account address does not yet exist, and so an empty

value is used.

value: the amount of Wei to be transferred from the sender to the

recipient. In a contract-creating transaction, this value serves as the

starting balance within the newly created contract account.

v, r, s: used to generate the signature that identiLes the sender of

the transaction.

init (only exists for contract-creating transactions): An EVM code

fragment that is used to initialize the new contract account. init is

•

•

•

•

•

•

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 19 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

run only once, and then is discarded. When init is Lrst run, it

returns the body of the account code, which is the piece of code

that is permanently associated with the contract account.

data (optional Leld that only exists for message calls): the input

data (i.e. parameters) of the message call. For example, if a smart

contract serves as a domain registration service, a call to that

contract might expect input Lelds such as the domain and IP

address.

We learned in the “Accounts” section that transactions — both message

calls and contract-creating transactions — are always initiated by

externally owned accounts and submitted to the blockchain. Another

way to think about it is that transactions are what bridge the external

world to the internal state of Ethereum.

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 20 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

But this doesn’t mean that contracts can’t talk to other contracts.

Contracts that exist within the global scope of Ethereum’s state can

talk to other contracts within that same scope. The way they do this

is via “messages” or “internal transactions” to other contracts. We

can think of messages or internal transactions as being similar to

transactions, with the major di_erence that they are NOT generated by

externally owned accounts. Instead, they are generated by contracts.

They are virtual objects that, unlike transactions, are not serialized and

only exist in the Ethereum execution environment.

When one contract sends an internal transaction to another

contract, the associated code that exists on the recipient contract

account is executed.



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 21 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

One important thing to note is that internal transactions or messages

don’t contain a gasLimit. This is because the gas limit is determined by

the external creator of the original transaction (i.e. some externally

owned account). The gas limit that the externally owned account sets

must be high enough to carry out the transaction, including any sub-

executions that occur as a result of that transaction, such as contract-to-

contract messages. If, in the chain of transactions and messages, a

particular message execution runs out of gas, then that message’s

execution will revert, along with any subsequent messages triggered by

the execution. However, the parent execution does not need to revert.

Blocks
All transactions are grouped together into “blocks.” A blockchain

contains a series of such blocks that are chained together.

In Ethereum, a block consists of:

the block header

information about the set of transactions included in that block

a set of other block headers for the current block’s ommers.

Ommers explained
What the heck is an “ommer?” An ommer is a block whose parent is

equal to the current block’s parent’s parent. Let’s take a quick dive into

what ommers are used for and why a block contains the block headers

for ommers.

Because of the way Ethereum is built, block times are much lower (~15

seconds) than those of other blockchains, like Bitcoin (~10 minutes).

This enables faster transaction processing. However, one of the

downsides of shorter block times is that more competing block solutions

are found by miners. These competing blocks are also referred to as

“orphaned blocks” (i.e. mined blocks do not make it into the main

chain).

The purpose of ommers is to help reward miners for including these

orphaned blocks. The ommers that miners include must be “valid,”

•

•

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 22 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

meaning within the sixth generation or smaller of the present block.

After six children, stale orphaned blocks can no longer be referenced

(because including older transactions would complicate things a bit).

Ommer blocks receive a smaller reward than a full block. Nonetheless,

there’s still some incentive for miners to include these orphaned blocks

and reap a reward.

Block header
Let’s get back to blocks for a moment. We mentioned previously that

every block has a block “header,” but what exactly is this? 

 

 A block header is a portion of the block consisting of:

parentHash: a hash of the parent block’s header (this is what

makes the block set a “chain”)

ommersHash: a hash of the current block’s list of ommers

beneLciary: the account address that receives the fees for mining

this block

stateRoot: the hash of the root node of the state trie (recall how we

learned that the state trie is stored in the header and makes it easy

for light clients to verify anything about the state)

transactionsRoot: the hash of the root node of the trie that

contains all transactions listed in this block

receiptsRoot: the hash of the root node of the trie that contains the

receipts of all transactions listed in this block

logsBloom: a Bloom Llter (data structure) that consists of log

information

diWculty: the diKculty level of this block

number: the count of current block (the genesis block has a block

number of zero; the block number increases by 1 for each each

subsequent block)

gasLimit: the current gas limit per block

gasUsed: the sum of the total gas used by transactions in this block

•

•

•

•

•

•

•

•

•

•

•

https://en.wikipedia.org/wiki/Bloom_filter


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 23 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

timestamp: the unix timestamp of this block’s inception

extraData: extra data related to this block

mixHash: a hash that, when combined with the nonce, proves that

this block has carried out enough computation

nonce: a hash that, when combined with the mixHash, proves that

this block has carried out enough computation

Notice how every block header contains three trie structures for:

state (stateRoot)

transactions (transactionsRoot)

receipts (receiptsRoot)

These trie structures are nothing but the Merkle Patricia tries we

discussed earlier.

Additionally, there are a few terms from the above description that are

worth clarifying. Let’s take a look.

Logs

•

•

•

•

•

•

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 24 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Ethereum keeps logs to make it possible to track various transactions

and messages. Each time a transaction executes, a log is generated.

A log entry contains:

the logger’s account address,

a series of topics that represent various events carried out by this

transaction, and

any data associated with these events.

Logs are stored in a bloom Llter, which stores the endless log data in an

eKcient manner.

Transaction receipt
Logs stored in the header come from the log information contained in

the transaction receipt. Just as you receive a receipt when you buy

something at a store, Ethereum generates a receipt for every transaction.

Like you’d expect, each receipt contains certain information about the

transaction. This receipt includes items like:

the block number

block hash

transaction hash

gas used by the current transaction

cumulative gas used in the current block after the current

transaction has executed

logs created when executing the current transaction

..and so on

Block difficulty
The “diKculty” of a block is used to enforce consistency in the time it

takes to validate blocks. The genesis block has a diKculty of 131,072,

and a special formula is used to calculate the diKculty of every block

thereafter. If a certain block is validated more quickly than the previous

block, the Ethereum protocol increases that block’s diKculty.

•

•

•

•

•

•

•

•

•

•

https://en.wikipedia.org/wiki/Bloom_filter


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 25 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

The diKculty of the block a_ects the nonce, which is a hash that must be

calculated when mining a block, using the proof-of-work algorithm.

The relationship between the block’s diWculty and nonce is

mathematically formalized as:

where Hd is the diIculty.

The only way to Lnd a nonce that meets a diKculty threshold is to use

the proof-of-work algorithm to enumerate all of the possibilities. The

expected time to Lnd a solution is proportional to the diKculty — the

higher the diKculty, the harder it becomes to Lnd the nonce, and so the

harder it is to validate the block, which in turn increases the time it takes

to validate a new block. So, by adjusting the diWculty of a block, the

protocol can adjust how long it takes to validate a block.

If, on the other hand, validation time is getting slower, the protocol

decreases the diKculty. In this way, the validation time self-adjusts to

maintain a constant rate — on average, one block every 15 seconds.

Transaction Execution
We’ve come to one of the most complex parts of the Ethereum protocol:

the execution of a transaction. Say you send a transaction o_ into the

Ethereum network to be processed. What happens to transition the state

of Ethereum to include your transaction?



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 26 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

First, all transactions must meet an initial set of requirements in order to

be executed. These include:

The transaction must be a properly formatted RLP. “RLP” stands for

“Recursive Length PreLx” and is a data format used to encode

nested arrays of binary data. RLP is the format Ethereum uses to

serialize objects.

Valid transaction signature.

Valid transaction nonce. Recall that the nonce of an account is the

count of transactions sent from that account. To be valid, a

transaction nonce must be equal to the sender account’s nonce.

The transaction’s gas limit must be equal to or greater than the

intrinsic gas used by the transaction. The intrinsic gas includes:

a predeLned cost of 21,000 gas for executing the transaction

a gas fee for data sent with the transaction (4 gas for every byte of

data or code that equals zero, and 68 gas for every non-zero byte of

data or code)

if the transaction is a contract-creating transaction, an additional

32,000 gas

•

•

•

•

1.

2.

3.



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 27 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

The sender’s account balance must have enough Ether to cover the

“upfront” gas costs that the sender must pay. The calculation for

the upfront gas cost is simple: First, the transaction’s gas limit is

multiplied by the transaction’s gas price to determine the

maximum gas cost. Then, this maximum cost is added to the total

value being transferred from the sender to the recipient.

If the transaction meets all of the above requirements for validity, then

we move onto the next step.

First, we deduct the upfront cost of execution from the sender’s balance,

and increase the nonce of the sender’s account by 1 to account for the

current transaction. At this point, we can calculate the gas remaining as

the total gas limit for the transaction minus the intrinsic gas used.

Next, the transaction starts executing. Throughout the execution of a

transaction, Ethereum keeps track of the “substate.” This substate is a

way to record information accrued during the transaction that will be

needed immediately after the transaction completes. SpeciLcally, it

contains:

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 28 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Self-destruct set: a set of accounts (if any) that will be discarded

after the transaction completes.

Log series: archived and indexable checkpoints of the virtual

machine’s code execution.

Refund balance: the amount to be refunded to the sender account

after the transaction. Remember how we mentioned that storage in

Ethereum costs money, and that a sender is refunded for clearing

up storage? Ethereum keeps track of this using a refund counter.

The refund counter starts at zero and increments every time the

contract deletes something in storage.

Next, the various computations required by the transaction are

processed.

Once all the steps required by the transaction have been processed, and

assuming there is no invalid state, the state is Lnalized by determining

the amount of unused gas to be refunded to the sender. In addition to

the unused gas, the sender is also refunded some allowance from the

“refund balance” that we described above.

Once the sender is refunded:

the Ether for the gas is given to the miner

the gas used by the transaction is added to the block gas counter

(which keeps track of the total gas used by all transactions in the

block, and is useful when validating a block)

all accounts in the self-destruct set (if any) are deleted

Finally, we’re left with the new state and a set of the logs created by the

transaction.

Now that we’ve covered the basics of transaction execution, let’s look at

some of the di_erences between contract-creating transactions and

message calls.

Contract creation
Recall that in Ethereum, there are two types of accounts: contract

accounts and externally owned accounts. When we say a transaction is

•

•

•

•

•

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 29 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

“contract-creating,” we mean that the purpose of the transaction is to

create a new contract account.

In order to create a new contract account, we Lrst declare the address of

the new account using a special formula. Then we initialize the new

account by:

Setting the nonce to zero

If the sender sent some amount of Ether as value with the

transaction, setting the account balance to that value

Deducting the value added to this new account’s balance from the

sender’s balance

Setting the storage as empty

Setting the contract’s codeHash as the hash of an empty string

Once we initialize the account, we can actually create the account, using

the init code sent with the transaction (see the “Transaction and

messages” section for a refresher on the init code). What happens during

the execution of this init code is varied. Depending on the constructor of

the contract, it might update the account’s storage, create other contract

accounts, make other message calls, etc.

As the code to initialize a contract is executed, it uses gas. The

transaction is not allowed to use up more gas than the remaining

gas. If it does, the execution will hit an out-of-gas (OOG) exception

and exit. If the transaction exits due to an out-of-gas exception, then

the state is reverted to the point immediately prior to transaction.

The sender is not refunded the gas that was spent before running

out.

Boo hoo.

However, if the sender sent any Ether value with the transaction, the

Ether value will be refunded even if the contract creation fails. Phew!

If the initialization code executes successfully, a Lnal contract-creation

cost is paid. This is a storage cost, and is proportional to the size of the

created contract’s code (again, no free lunch!) If there’s not enough gas

•

•

•

•

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 30 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

remaining to pay this Lnal cost, then the transaction again declares an

out-of-gas exception and aborts.

If all goes well and we make it this far without exceptions, then any

remaining unused gas is refunded to the original sender of the

transaction, and the altered state is now allowed to persist!

Hooray!

Message calls
The execution of a message call is similar to that of a contract creation,

with a few di_erences.

A message call execution does not include any init code, since no new

accounts are being created. However, it can contain input data, if this

data was provided by the transaction sender. Once executed, message

calls also have an extra component containing the output data, which is

used if a subsequent execution needs this data.

As is true with contract creation, if a message call execution exits

because it runs out of gas or because the transaction is invalid (e.g. stack

overpow, invalid jump destination, or invalid instruction), none of the

gas used is refunded to the original caller. Instead, all of the remaining

unused gas is consumed, and the state is reset to the point immediately

prior to balance transfer.

Until the most recent update of Ethereum, there was no way to stop or

revert the execution of a transaction without having the system consume

all the gas you provided. For example, say you authored a contract that

threw an error when a caller was not authorized to perform some

transaction. In previous versions of Ethereum, the remaining gas would

still be consumed, and no gas would be refunded to the sender. But the

Byzantium update includes a new “revert” code that allows a

contract to stop execution and revert state changes, without

consuming the remaining gas, and with the ability to return a

reason for the failed transaction. If a transaction exits due to a revert,

then the unused gas is returned to the sender.

Execution model



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 31 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

So far, we’ve learned about the series of steps that have to happen for a

transaction to execute from start to Lnish. Now, we’ll look at how the

transaction actually executes within the VM.

The part of the protocol that actually handles processing the

transactions is Ethereum’s own virtual machine, known as the

Ethereum Virtual Machine (EVM).

The EVM is a Turing complete virtual machine, as deLned earlier. The

only limitation the EVM has that a typical Turing complete machine does

not is that the EVM is intrinsically bound by gas. Thus, the total amount

of computation that can be done is intrinsically limited by the amount of

gas provided.

Moreover, the EVM has a stack-based architecture. A stack machine is a

computer that uses a last-in, Lrst-out stack to hold temporary values.

The size of each stack item in the EVM is 256-bit, and the stack has a

maximum size of 1024.

Source: CMU

https://en.wikipedia.org/wiki/Stack_machine


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 32 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

The EVM has memory, where items are stored as word-addressed byte

arrays. Memory is volatile, meaning it is not permanent.

The EVM also has storage. Unlike memory, storage is non-volatile and is

maintained as part of the system state. The EVM stores program code

separately, in a virtual ROM that can only be accessed via special

instructions. In this way, the EVM di_ers from the typical von Neumann

architecture, in which program code is stored in memory or storage.

The EVM also has its own language: “EVM bytecode.” When a

programmer like you or me writes smart contracts that operate on

Ethereum, we typically write code in a higher-level language such as

Solidity. We can then compile that down to EVM bytecode that the EVM

can understand.

Okay, now on to execution.

Before executing a particular computation, the processor makes sure

that the following information is available and valid:

System state

Remaining gas for computation

Address of the account that owns the code that is executing

Address of the sender of the transaction that originated this

execution

•

•

•

•

https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Von_Neumann_architecture


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 33 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Address of the account that caused the code to execute (could be

di_erent from the original sender)

Gas price of the transaction that originated this execution

Input data for this execution

Value (in Wei) passed to this account as part of the current

execution

Machine code to be executed

Block header of the current block

Depth of the present message call or contract creation stack

At the start of execution, memory and stack are empty and the program

counter is zero.

PC: 0 STACK: [] MEM: [], STORAGE: {}

The EVM then executes the transaction recursively, computing the

system state and the machine state for each loop. The system state is

simply Ethereum’s global state. The machine state is comprised of:

gas available

program counter

memory contents

active number of words in memory

stack contents.

Stack items are added or removed from the leftmost portion of the

series.

On each cycle, the appropriate gas amount is reduced from the

remaining gas, and the program counter increments.

At the end of each loop, there are three possibilities:

•

•

•

•

•

•

•

•

•

•

•

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 34 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

The machine reaches an exceptional state (e.g. insuKcient gas,

invalid instructions, insuKcient stack items, stack items would

overpow above 1024, invalid JUMP/JUMPI destination, etc.) and so

must be halted, with any changes discarded

The sequence continues to process into the next loop

The machine reaches a controlled halt (the end of the execution

process)

Assuming the execution doesn’t hit an exceptional state and reaches a

“controlled” or normal halt, the machine generates the resultant state,

the remaining gas after this execution, the accrued substate, and the

resultant output.

Phew. We got through one of the most complex parts of Ethereum. Even

if you didn’t fully comprehend this part, that’s okay. You don’t really

need to understand the nitty gritty execution details unless you’re

working at a very deep level.

How a block gets finalized
Finally, let’s look at how a block of many transactions gets Lnalized.

When we say “Lnalized,” it can mean two di_erent things, depending on

whether the block is new or existing. If it’s a new block, we’re referring

to the process required for mining this block. If it’s an existing block,

then we’re talking about the process of validating the block. In either

case, there are four requirements for a block to be “Lnalized”:

 

1) Validate (or, if mining, determine) ommers

 Each ommer block within the block header must be a valid header and

be within the sixth generation of the present block.

 

2) Validate (or, if mining, determine) transactions

The gasUsed number on the block must be equal to the cumulative gas

used by the transactions listed in the block. (Recall that when executing

a transaction, we keep track of the block gas counter, which keeps track

of the total gas used by all transactions in the block).

 

3) Apply rewards (only if mining)

The beneLciary address is awarded 5 Ether for mining the block. (Under

1.

2.

3.



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 35 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Ethereum proposal EIP-649, this reward of 5 ETH will soon be reduced

to 3 ETH). Additionally, for each ommer, the current block’s beneLciary

is awarded an additional 1/32 of the current block reward. Lastly, the

beneLciary of the ommer block(s) also gets awarded a certain amount

(there’s a special formula for how this is calculated).

 

 4) Verify (or, if mining, compute a valid) state and nonce

Ensure that all transactions and resultant state changes are applied, and

then deLne the new block as the state after the block reward has been

applied to the Lnal transaction’s resultant state. VeriLcation occurs by

checking this Lnal state against the state trie stored in the header.

Mining proof of work
The “Blocks” section briepy addressed the concept of block diKculty. The

algorithm that gives meaning to block diKculty is called Proof of Work

(PoW).

Ethereum’s proof-of-work algorithm is called “Ethash” (previously

known as Dagger-Hashimoto).

The algorithm is formally deLned as:

where m is the mixHash, n is the nonce, Hn is the new block’s header

(excluding the nonce and mixHash components, which have to be

computed), Hn is the nonce of the block header, and d is the DAG, which is a

large data set.

In the “Blocks” section, we talked about the various items that exist in a

block header. Two of those components were called the mixHash and

the nonce. As you may recall:

https://github.com/ethereum/EIPs/pull/669
https://github.com/ethereum/wiki/wiki/Ethash
https://en.wikipedia.org/wiki/Directed_acyclic_graph


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 36 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

mixHash is a hash that, when combined with the nonce, proves

that this block has carried out enough computation

nonce is a hash that, when combined with the mixHash, proves

that this block has carried out enough computation

The PoW function is used to evaluate these two items.

How exactly the mixHash and nonce are calculated using the PoW

function is somewhat complex, and something we can delve deeper into

in a separate post. But at a high level, it works like this:

A “seed” is calculated for each block. This seed is di_erent for every

“epoch,” where each epoch is 30,000 blocks long. For the Lrst epoch, the

seed is the hash of a series of 32 bytes of zeros. For every subsequent

epoch, it is the hash of the previous seed hash. Using this seed, a node

can calculate a pseudo-random “cache.”

This cache is incredibly useful because it enables the concept of “light

nodes,” which we discussed previously in this post. The purpose of light

nodes is to a_ord certain nodes the ability to eKciently verify a

transaction without the burden of storing the entire blockchain dataset.

A light node can verify the validity of a transaction based solely on this

cache, because the cache can regenerate the speciLc block it needs to

verify.

Using the cache, a node can generate the DAG “dataset,” where each

item in the dataset depends on a small number of pseudo-randomly-

selected items from the cache. In order to be a miner, you must generate

this full dataset; all full clients and miners store this dataset, and the

dataset grows linearly with time.

Miners can then take random slices of the dataset and put them through

a mathematical function to hash them together into a “mixHash.” A

miner will repeatedly generate a mixHash until the output is below the

desired target nonce. When the output meets this requirement, this

nonce is considered valid and the block can be added to the chain.

Mining as a security mechanism

 Overall, the purpose of the PoW is to prove, in a cryptographically

secure way, that a particular amount of computation has been expended

to generate some output (i.e. the nonce). This is because there is no

•

•



01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 37 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

better way to Lnd a nonce that is below the required threshold

other than to enumerate all the possibilities. The outputs of

repeatedly applying the hash function have a uniform distribution, and

so we can be assured that, on average, the time needed to Lnd such a

nonce depends on the diWculty threshold. The higher the diKculty,

the longer it takes to solve for the nonce. In this way, the PoW

algorithm gives meaning to the concept of diWculty, which is used

to enforce blockchain security.

What do we mean by blockchain security? It’s simple: we want to create

a blockchain that EVERYONE trusts. As we discussed previously in this

post, if more than one chain existed, users would lose trust, because they

would be unable to reasonably determine which chain was the “valid”

chain. In order for a group of users to accept the underlying state that is

stored on a blockchain, we need a single canonical blockchain that a

group of people believes in.

This is exactly what the PoW algorithm does: it ensures that a

particular blockchain will remain canonical into the future, making

it incredibly diWcult for an attacker to create new blocks that

overwrite a certain part of history (e.g. by erasing transactions or

creating fake transactions) or maintain a fork. To have their block

validated Lrst, an attacker would need to consistently solve for the nonce

faster than anyone else in the network, such that the network believes

their chain is the heaviest chain (based on the principles of the GHOST

protocol we mentioned earlier). This would be impossible unless the

attacker had more than half of the network mining power, a scenario

known as the majority 51% attack.

Mining as a wealth distribution mechanism
Beyond providing a secure blockchain, PoW is also a way to distribute

wealth to those who expend their computation for providing this

security. Recall that a miner receives a reward for mining a block,

including:

a static block reward of 5 ether for the “winning’” block (soon to be

changed to 3 ether)

the cost of gas expended within the block by the transactions

included in the block

•

•

https://en.bitcoin.it/wiki/Majority_attack
https://github.com/ethereum/EIPs/pull/669


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 38 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

an extra reward for including ommers as part of the block

In order to ensure that the use of the PoW consensus mechanism for

security and wealth distribution is sustainable in the long run, Ethereum

strives to instill these two properties:

Make it accessible to as many people as possible. In other words,

people shouldn’t need specialized or uncommon hardware to run

the algorithm. The purpose of this is to make the wealth

distribution model as open as possible so that anyone can provide

any amount of compute power in return for Ether.

Reduce the possibility for any single node (or small set) to make a

disproportionate amount of proLt. Any node that can make a

disproportionate amount of proLt means that the node has a large

inpuence on determining the canonical blockchain. This is

troublesome because it reduces network security.

In the Bitcoin blockchain network, one problem that arises in relation to

the above two properties is that the PoW algorithm is a SHA256 hash

function. The weakness with this type of function is that it can be solved

much more eKciently using specialized hardware, also known as ASICs.

In order to mitigate this issue, Ethereum has chosen to make its PoW

algorithm (Ethhash) sequentially memory-hard. This means that the

algorithm is engineered so that calculating the nonce requires a lot of

memory AND bandwidth. The large memory requirements make it hard

for a computer to use its memory in parallel to discover multiple nonces

simultaneously, and the high bandwidth requirements make it diKcult

for even a super-fast computer to discover multiple nonce

simultaneously. This reduces the risk of centralization and creates a

more level playing Leld for the nodes that are doing the veriLcation.

One thing to note is that Ethereum is transitioning from a PoW

consensus mechanism to something called “proof-of-stake”. This is a

beastly topic of its own that we can hopefully explore in a future post.

☺

Conclusion
…Phew! You made it to the end. I hope?

•

•

•

https://github.com/ethereum/wiki/wiki/Ethash


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 39 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

There’s a lot to digest in this post, I know. If it takes you multiple reads to

fully understand what’s going on, that’s totally Lne. I personally read the

Ethereum yellow paper, white paper, and various parts of the code base

many times before grokking what was going on.

Nonetheless, I hope you found this overview helpful. If you Lnd any

errors or mistakes, I’d love for you to write a private note or post it

directly in the comments. I look at all of ’em, I promise ;)

And remember, I’m human (yep, it’s true) and I make mistakes. I took

the time to write this post for the beneLt of the community, for free. So

please be constructive in your feedback, without unnecessary bashing.

☺

. . .

[1] https://github.com/ethereum/yellowpaper

https://github.com/ethereum/yellowpaper


01.10.17, 09(44How does Ethereum work, anyway? – Preethi Kasireddy – Medium

Seite 40 von 40https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369


